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ABSTRACT 
Artificial neural nets have been equipped with working out the difficulty that 
arises as a result of exploding and vanishing gradients. The difficulty of 
working out is worsened exponentially particularly in deep learning 
understanding. With gradient-oriented learning approaches the up-to-date 
error gesture has to “flow back in time” throughout the response links to 
previously feedbacks for designing suitable feedback storage. To address the 
gradient vanishing delinquent, adaptive optimization approaches are given. 
With adaptive learning proportion, the adaptive gradient classifier switches the 
constraint for substantial hyper factor fine-tuning. Based on the numerous 
outstanding advances that recurrent neural nets (RNN) have added in the 
erstwhile in the field of Deep Learning. The objective of this paper is to have a 
concise synopsis of this evolving topic, with a focus on how to over the 
vanishing gradient problems during learning RNN. There are four types of 
methods adopted in this study to provide solutions to the gradient vanishing 
problem and they include approaches that do not employ gradients; 
approaches that enforce larger gradients, approaches that work at a higher 
level, and approaches that make use of unique structures. The inaccuracy flow 
for gradient-oriented recurrent learning approaches was hypothetically 
examined. This analysis exhibited that learning to link long-term lags can be 
problematic. Cutting-edge approaches to solving the gradient vanishing 
difficulty were revealed, but these methods have serious disadvantages, for 
example, practicable only for discrete data. The study deep-rooted that 
orthodox learning classifiers for recurrent neural networks are not able to learn 
long-term lag complications at a reasonable interval. 
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INTRODUCTION 

Artificial neural nets have been equipped with working out the difficulty that arises as a 
result of exploding and evaporation gradient (Glorot and Bengio, 2010; Bynagari, 2019; 
LeCum et al., 2015). The difficulty of working out is worsened exponentially particularly in 
deep learning understanding. The term "deep learning" states to a sophisticated artificial 
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intelligence structure. Many sheets of data processing phases in hierarchical designs are 
worked out by a backpropagation classifier for pattern categorization in neural networks 
design (Bynagari, 2019). Backpropagation classifier for uses optimization approaches to 
calculate the error function as presented in Figure 1. At that time, the loss function is the 
backdrop from the throughput sheet to the feedback sheet for loads factor modification. 
Typical backprop botched to make in deep neural nets owing to the prevalent existence of 
confined ideal situation and other optimization difficulties in the non-convex unbiased 
function (Glorot and Bengio, 2010). This gradient vanishing problem has driven the top 
secreted sheets into inundation and is revolving more undecorated as the depth escalates. 

 

Figure 1: Backpropagation classifier for uses optimization approaches 

Recurrent neural nets (RNN) can mine dependencies temporarily. Moreover, RNN is 
employed for presentations together with delays temporary of appropriate gestures, for 
instance, speech processing, process control, time-series assessment, non-Markovian control 
(Puskorius and Feldkamp, 1994; Hochreiter and Schmidhuber, 1997), music arrangement 
(Mozer, 1992). RNN should be able to learn which previous feedbacks have to be 
maintained to create the up-to-date preferred throughput. With gradient-oriented learning 
approaches the up-to-date error gesture has to “flow back in time” throughout the input 
links to previously feedbacks for designing suitable feedback storage. 

The major cause of gradient varnishing is the selection of activation function, and it can be 
divided further into saturation activation functions that are regularly utilized for verdict 
margins in the initial neural net signs of progress. Sigmoid function (Bynagari & Amin, 
2019) is prevalent for the reason of its differentiable possessions that are appropriate for 
backpropagation in neural nets. The linear rectified unit (Glorot et al., 2011), on the other 
hand, is an example of an unsaturated activation function that has been shown to solve the 
saturation problem. For the reason that linear rectified units do not involve an exponential 
term to characterize nonlinearity, it is allowed of the gradient vanishing difficult. For 
artificial intelligence working out, linear rectified units are now the most extensively used 
activation function. As a result, choosing the best deep learning structure influences time 
overwhelming. To challenge the gradient vanishing delinquent, adaptive optimization 
approaches are given. With adaptive learning proportion, the adaptive gradient classifier 
(Duchi et al. 2011) switches the constraint for substantial hyper factor fine-tuning. 

Objectives of the Study 

Based on the numerous outstanding advances that recurrent neural nets (RNN) have added 
in the erstwhile in the field of Deep Learning are ringing bells (Paruchuri & Asadullah, 
2018). The objective of this paper is to have a concise synopsis of this evolving topic, with a 
focus on how to over the vanishing gradient problems during learning RNN.  



Asian Journal of Applied Science and Engineering, Volume 9, No 1/2020                                                                              ISSN 2305-915X(p); 2307-9584(e) 

Copyright © 2020 Author/(s) Page 199 

This research article is sectioned into five parts, Section one is the introduction, a concise 
description of the problem statement, and objectives of the study. Section 2 presents a 
review of related pieces of literature, under this section, the hypothetical analyzes of the 
gradient vanishing problems and other related issues to the subject matter and previous 
research work. Section three presents techniques employed in attempting to overcome the 
vanishing gradient problems. The traditional classifiers used to address this problem is 
compared with advanced approaches on different tasks including long time lags, and 
Section 5 present conclusion and recommendation. 

LITERATURE REVIEW 

Decomposing Gradient 

Traditional Backpropagation through time (BPTT): Assuming a completely coupled 
recurrent network with components 1,…,n is given, the stimulation of a non-feedback 
component ί with activation function 𝑓𝑖 as well as network feedback 𝑛𝑒𝑡𝑖  (𝑡) =  ∑ 𝑤𝑖𝑗𝑦𝑗(𝑡 −𝑗

1) 𝑖𝑠 𝑦𝑗 (𝑡) =  𝑓𝑖 (𝑛𝑒𝑡𝑖 (𝑡)). Where 𝑤𝑖𝑗 is the load on the connection usually from component j 

to ί. 𝑑𝑘(𝑡) Signifies throughput component k’s aim at current time t. utilizing mean square 
error, k’s exterior (Aim) error is 

𝐸𝑘  (𝑡) = (𝑑𝑘  (𝑡) −  𝑦𝑘(𝑡)) 

Every non-throughput units ί contain zero exterior error 𝐸𝑖  (𝑡) = 0. At a random period 𝜏 ≤ 𝑡 
non-feedback unit j’s error indication is the summation of the exterior error and the 
backdrop error indicator from the last step: 

𝜗𝑗  (𝜏) =  𝑓𝑗
𝑙  (𝑛𝑒𝑡𝑗  (𝜏)) (𝐸𝑗  (𝜏) +  ∑ 𝑤𝑖𝑗𝜗𝑖

𝑖

(𝜏 + 1)) 

Error indicators are adjusted to zero when the simulation is reset at time 𝜏: 𝜗𝑗  (𝜏) = 0 and 

𝑓𝑗
𝑙  (𝑛𝑒𝑡𝑗(𝜏)) = 0. The load modernize at time 𝜏 is 𝑤𝑗𝑖

𝑛𝑒𝑤 =  𝑤𝑗𝑖
𝑜𝑙𝑑+ ∝ 𝜗𝑗  (𝜏)𝑦𝑙(𝜏 − 1), where ∝ 

denotes the learning proportion, and l is a random component coupled to unit j.  

Backpropagating an error occurring at a component u at time phase t to a component v for q 
time phases scales the error by:  

𝜕𝜗𝑣  (𝑡 − 𝑞)

𝜕𝜗𝑣  (𝑡)
=  {

𝑓𝑣
𝑙 (𝑛𝑒𝑡𝑣  (𝑡 − 1))𝑤𝑢𝑣      

𝑓𝑣
𝑙  (𝑛𝑒𝑡𝑣  (𝑡 − 𝑞)) ∑

𝜕𝜗𝑣  (𝑡 − 𝑞 + 1)

𝜕𝜗𝑣  (𝑡)
𝑤𝑙𝑣

𝑛

𝑙=1

  

𝑞 = 1

𝑞 > 1
 

With 𝑙𝑞 = 𝑣 𝑎𝑛𝑑 𝑙0 = 𝑢, the scaling factor is  

𝜕𝜗𝑣  (𝑡 − 𝑞)

𝜕𝜗𝑣  (𝑡)
=  ∑ …

𝑛

𝑙𝑙=1

∑ ∏ 𝑓𝑙𝑚

𝑙
𝑞

𝑚=1

𝑛

𝑙𝑞−1=1

 (𝑛𝑒𝑡𝑙𝑚
(𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1

 

The relationship between the empirically observed disappearing gradient and the above 
equation, the sum of the 𝑛𝑞−1terms (Hochreiter and Schmidhuber, 1997). 

∏ 𝑓𝑙𝑚

𝑙
𝑞

𝑚=1
 (𝑛𝑒𝑡𝑙𝑚

(𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1
 

Scales the error backflow, if  
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𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) =  ⌊𝑓𝑙𝑚

𝑙  (𝑛𝑒𝑡𝑙𝑚 (𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1
 ⌋ < 1.0 

For every m the biggest product in:   

𝜕𝜗𝑣  (𝑡 − 𝑞)

𝜕𝜗𝑣  (𝑡)
=  ∑ …

𝑛

𝑙𝑙=1

∑ ∏ 𝑓𝑙𝑚

𝑙
𝑞

𝑚=1

𝑛

𝑙𝑞−1=1

 (𝑛𝑒𝑡𝑙𝑚
(𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1

 

Drops exponentially with q, which is the error flow disappears. A vanishing mistake or error 

backflow has virtually no consequence on the load keep posted. Assumed constant 𝑦𝑙𝑚−1  ≠

0, 𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) is highest where 𝑤𝑙𝑚𝑙𝑚−1
−  

1

𝑦𝑙𝑚−1
coth (

1

2
𝑛𝑒𝑡𝑙𝑚

) 

For every absolute load value improving ⌊𝑤𝑙𝑚𝑙𝑚−1
⌋  →  ∞, 𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) traces to zero. 

Therefore, the gradient vanishing cannot be overlooked by improving the absolute load 

values, the elements in:∏ 𝑓𝑙𝑚

𝑙𝑞
𝑚=1  (𝑛𝑒𝑡𝑙𝑚

(𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1
 may have diverse signs. However, 

improving or upturning the quantity of components n may not automatically improve the 
“absolute error flow digits”. Rather with more components, the prospect of the inaccuracy 
backflow’s entire digit improves. For logistic sigmoid function, 𝑓𝑙𝑚

, the optimal value of 

𝑓𝑙𝑚

𝑙 = 0.25 in that case 𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) <  1 for ⌊𝑤𝑙𝑚𝑙𝑚−1
⌋ is less than 4.0. In the case that 𝑤𝑚𝑎𝑥 

is less than 4.0, this holds for the entire optimal load value 𝑤𝑚𝑎𝑥 that is for activation or 
initialization then every 𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) are less than 1.0. Therefore, with logistic initialization 
functions, the inaccuracy flow tends to fades or vanish particularly at the commencement of 
learning. Improving the learning proportion will not cancel the effects of gradients 
vanishing, for the reason that it will not transform the percentage of long-term inaccuracy 
flow and short-term inaccuracy flow, that is latest response have more impact on the recent 
throughput (Hochreiter and Schmidhuber, 1997; Vadlamudi, 2016). 

Upper boundary for the absolute scaling parameter: Matrix A’s component in the i-th 
vertical column and j-th horizontal row is signified by  ⌊𝐴⌋.𝑖𝑗 . the i-th element of vector x is 

represented by ⌊𝑥⌋.𝑖 . the initialization vector at time t with an after deductions feedback 

vector 𝑁𝑒𝑡 (𝑡) ∶= 𝑊 𝑌 (𝑡 − 1) and load matrix ⌊𝑊⌋.𝑖𝑗 ≔  𝑤𝑖𝑗is ⌊𝑌 (𝑡)⌋.𝑖 ≔ 𝑦𝑖  (𝑡) that is to 

simplify the exterior feedback by suppressing. 

The initialization function vector is then given as ⌊𝐹 (𝑁𝑒𝑡 (𝑡))⌋.𝑖 ≔  𝑓𝑖  (𝑛𝑒𝑡𝑖 (𝑡)), 𝐹𝑙(𝑡) is the 

transverse matrix of 1st order derivatives expressed as : ⌊𝐹𝑙(𝑡)⌋.𝑖𝑗 ∶=  𝑓𝑖
𝑙(𝑛𝑒𝑡𝑖  (𝑡)) if 𝑖 = 𝑗, and 

⌊𝐹𝑙(𝑡)⌋.𝑖𝑗  ≔ 0 otherwise. 𝑤𝑣 is component v’s outbound vector load (⌊𝑊𝑣⌋.𝑖 ≔  ⌊𝑊⌋.𝑖𝑣  =  𝑤𝑖𝑣) 

and 𝑤𝑣𝑇  is component u’s inward vector load (⌊𝑊𝑢𝑇⌋.𝑖 ≔  ⌊𝑊⌋.𝑢𝑖  =  𝑤𝑢𝑖). The vector 
𝜕𝑌 (𝑡)

𝜕𝑛𝑒𝑡𝑣 (𝑡−𝑞)
  is expressed as |

𝝏𝒀 (𝒕)

𝝏𝒏𝒆𝒕𝒗 (𝒕−𝒒)
  | .𝒊 ≔  

𝝏𝒚𝒊 (𝒕)

𝝏𝒏𝒆𝒕𝒗 (𝒕−𝒒)
   for q component to be greater than or 

equal to 0 and the matrix ∇𝑌 (𝑡−1)𝑌(𝑡) is expressed as |∇𝑌 (𝑡−1)𝑌(𝑡)|.𝑖𝑗 ∶=  
𝜕𝑦𝑖 (𝑡)

𝜕𝑛𝑒𝑡𝑣 (𝑡−𝑞)
 from this 

expression ∇𝑌 (𝑡−1)𝑌(𝑡) =  𝐹𝑖(𝑡)𝑊 . 

Data Hypothetical Consideration: Looking at gradient vanishing from different 
standpoints, gradient vanishing relates to a piece of information vanishing in the interior 
states of an RNN. Let the function mapping be denoted with G, the previous interior states 
Y (t – 1) to the definite interior states, 

𝑮(𝒀(𝒕 − 𝟏)) ∶= 𝑭(𝑵𝒆𝒕 (𝒕)) = 𝑭 (𝑾 𝒀 (𝒕 − 𝟏)) 

Since Y (t) and Y (t – 1) as arbitrary factors, the shared data between these arbitrary factors is 

𝐻(𝑌 (𝑡)) − 𝐻 (𝑌 (𝑡)⌊𝑌 (𝑡 − 1)) means the conditional arbitrary parameters Y (t) given Y (t – 1).  
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For the entropy of Y (t) 

𝐻 (𝑌 (𝑡)) ≤ 𝐻 (𝑌 (𝑡 − 1) + 𝐸 (log|det(𝐽 𝑌 (𝑡 − 1)))⌊)  

This equation holds where E is the expectation of arbitrary parameters and J is the Jacobian 

of G. the firmness of the recurrent network necessitates ⌊det(𝐽(𝑌(𝑡 − 1)))⌋ ≤ 1 

The requirement makes the RNN resistant to noise that is small variations of the feedback 
do not effort the net to very diverse states (Pineda, 1988; Paruchuri, 2019; Ganapathy, 2016). 

The LHS of ⌊det(𝐽(𝑌(𝑡 − 1)))⌋ ≤ 1 is typically less than 1 such that the data in the internal 

states become extinct over time. The challenge of vanishing data becomes shoddier with a 
snowballing dimension of the time interval over which the data has to be stowed. To 

circumvent vanishing data det(𝐽(𝑌(𝑡 − 1))) = 1 must be imposed. A volume-conserving 

mapping constrained to only one interior state is the major idea of “Long Short Term 
Memory” (LSTM) (Hochreiter and Schmidhuber, 1997; Hochreiter and Schmidhuber, 1997; 
Hochreiter and Schmidhuber, 1996). 

Stimulation Function 

Recurrent neural networks comprise numerous hidden sheets built together hierarchically 
to calculate inference. Each sheet is prepared of numerous nodes or artificial perceptron’s as 
presented in Figure 2. After adding up all of the response and load parameters, a 
stimulation function is utilized to regulate how each neuron fires. The perceptron 
component can be defined as,  

𝑥 =  ∑ 𝑤𝑛  ×  𝑣𝑛 +  𝑏𝑛

𝑖

𝑛=1

, 𝑦 = 𝑓(𝑥), 

Where 𝑖 is the summation of nodes, 𝑤𝑛 stands for loads variables, 𝑣𝑛 stands for responses, 𝑏𝑛 
stands for bias variables, and f(.) stands for stimulation function. The stimulation function 
adds non-linearity to the response sets while also limiting the firing boundary to a finite 
value (Lau and Lim, 2018). With enough working out cycles, the network is capable to 
convey the proper inference since only some of the nodes in each layer are activated 
depending on the input. Saturated and unsaturated stimulation functions are the two forms 
of stimulation functions in general. 

 

Figure 2: Basic Perceptron component structure 

Saturated stimulation function: Saturated stimulation functions, such as the sigmoid 
stimulation function, are more broadly utilized since they closely resemble biological 
stimulation proportions (Bynagari & Amin, 2019). The sigmoid stimulation function has an 
‘S' shape with a balance of linear and non-linear inputs (Bynagari, 2017). The following 
formula is used to compute sigmoid stimulation: 
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𝒇𝟏 (𝒙) =  
𝟏

𝟏 +  𝒆−𝒙
 

As a result, each neuron's firing is limited to a range of 0 to 1, which is hypothetically ideal 
for turning neurons on or off. The gradient for data falling in the 0 or 1 range, on the other 
hand, is nearly zero. Backpropagation into networks with saturated zero gradients results in 
information loss (Bynagari, 2014). In a nutshell, this expounds on the gradient vanishing 
problem. With a saturated stimulation function, there is a gradient problem. The blunder 
due to vanishing gradient, the signal for optimization is lost, and the working out repetition 
was entirely halted as a result of this. 

Unsaturated Stimulation Function: The linear rectified unit (Glorot et al., 2011) is an 
unsaturated stimulation function that was developed to solve the gradient vanishing 
problem. The linear rectified unit is the most widely utilized stimulation function presently 
since most contemporary network design is frequently wide and deep. The linear rectified 
unit takings 0 if it gets a negative number and the response values if it gets positive 
numbers, or more simply expressed as, 

𝒇𝟐 (𝒙) =  {
𝒙  𝒙 > 𝟎 

𝟎,   𝒙 ≤ 𝟎
 

Because the output is either 0 or some positive numbers, the linear rectified unit is also 
known as the ramp function. As a result, since the throughput is not structured for any 
positive values, the linear rectified unit is prone to gradient vanishing problems (Yang and 
Schoenholz, 2017). As a result, the linear rectified unit stimulation function is executed in 
conjunction with correct load variables initialization and/or pre-working out techniques. 
Furthermore, if you provide zero as a throughput during the negative response, the 
backpropagation method will produce a zero gradient. This kills the neuron (preventing it 
from firing again) and it will never resuscitate. Leaky linear rectified unit (Maas et al., 2013) 
presented a non-zero slope value for the negative component of the linear rectified unit to 
circumvent backpropagating nil gradient into the nets, thus circumventing the vanishing 
linear rectified unit problem. However, it has been noted that leaky linear rectified 
component produces complex outcomes liable on the non-zero slope value chosen, which is 
subsequently overcome by Parametric linear rectified unit (Bynagari & Fadziso, 2018). As an 
alternative to postulating a predefined continual value as in a leaky linear rectified unit, the 
parametric linear rectified component assigns the slope value as a working out parameter.  

METHODS 

Gradient descent oriented classifiers 

The gradient vanishing problem affects the most extensively used techniques (Hochreiter 
and Schmidhuber, 1997; Elman, 1988, Fahlman, 1991; Ganapathy, 2018a; Schmidhuber, 1992; 
Pearlmutter, 1989; Pearlmutter, 1995; Vadlamudi, 2019). They have a lot of trouble learning 
long-term from a gradient vanishing problem. There are four types of solutions:  

 Approaches that do not employ gradients;  

 Approaches that enforce larger gradients. 

 Approaches that work at a higher level 

 Approaches that make use of unique structures 

Universal search approaches do not practice gradient data: Multiple grid arbitrary search, 
simulated annealing (Ganapathy, 2016), and arbitrary load guessing (Schmidhuber and 
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Hochreiter, 1995) are examples of non-gradient data methods that were investigated. Global 
search strategies have been found to function well on "simple" situations with long-term 
dependencies. The absence of exact calculation and the use of nets with few variables 
characterize “simple” issues (these solutions conform to “flat minima”) (Hochreiter and 
Schmidhuber, 1997).  

Approaches that enforce larger gradients: Although time-weighted pseudo-Newton 
optimization and separate error propagation can enforce larger gradient values, it appears that 
these techniques have difficulty learning to keep precise real-valued information over time. 

Approaches that work at a higher level: Previously, an EM method for aim propagation 
was advocated (Ganapathy, 2016). Because this method uses a discrete number of states, it 
will have issues with continuous values. For RNN training, Kalman filter procedures are 
used (Puskorius and Feldkamp, 1994). A derivative discount factor, on the other hand, 
causes gradient vanishing difficulties. A hierarchical chunker system works well when a 
long-term lag problem has local regularities (Schmidhuber, 1992; Bynagari, 2018). 

Approaches that make use of unique structures: Second-order nets with sigma-pi 
components are commonly used to increase error flow, however vanishing error glitches are 
difficult to circumvent (Watrons and Kuhn, 1992; Miller and Giles, 1993). Net initialization or 
stimulation from preceding time phases is transmitted back into the network using fixed delay 
lines in a "Time-Delay Neural Network" (TDNN) (Lang et al., 1990). For the reason that the 
error uses "shortcuts" as it proliferates back, the error reduction in the "Time-Delay Neural 
Network" is decelerated down. The “Time-Delay Neural Network” has a trade-off: extending 
the delay line length increases error flow, but the net has more parameters/components. 
NARX nets (Lin et al., 1996), which use the load summation of old initialization instead of a 
fixed deferral line, are special examples of "Time-Delay Neural Network" (Plate, 1993). The 
“Gamma Memory,” a more complex version of the “Time-Delay Neural Network,” has been 
proposed (Ganapathy, 2019), but its performance on glitches with long-time cravings does not 
perform to be better than the “Time-Delay Neural Network” performance.  

Time constants regulate the scaling factor of an error if it is propagated back for a one-time 
step at a single unit in some designs (Mozer, 1992). Extended time gaps, on the other hand, 
cannot be processed for the reason that fine-tuning the time constant is nearly impossible. 
The vanishing gradient is circumvented by updating a single component by adding the old 
activation and scaled current net input (Sun et al., 1993). However, further irrelevant net 
inputs can cause the stored value to be perturbed. “Long Short Term Memory” (LSTM) 
(Hochreiter and Schmidhuber, 1996; Hochreiter and Schmidhuber, 1997; Hochreiter and 
Schmidhuber, 1997) is a specific design that uses special components to impose consistent 
error flow (comprising a volume-conserving mapping). Unlike the previously suggested 
approach for avoiding vanishing gradients (Sun et al., 1993) 

RESULTS AND DISCUSSION 

Experiment 1: Embedded Reber Grammar 

The “embedded Reber grammar” was extensively used as a point of reference problem for 
RNNs (Cleeremans et al., 1989; Smith and Zipser, 1989; Fahlman, 1991; Ganapathy, 2018b). 
Because there are no long gaps in this job, it can be mastered using traditional methods. The 
experiment demonstrates that alternative approaches outperformed traditional gradient 
descent algorithms on a short time lag challenge. As seen in Figure 3, being at the leftmost 
node (with an empty string), A string is created by following the directed edges and totaling 
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the conforming symbols to the current string until the rightmost node is reached. Alternate 
edges are chosen at random, with a chance of 0.5. The net analyzes the string in order, 
receiving the real symbol as a response and having to estimate the next symbol. The net must 
store the second symbol (“T” or “P”) to estimate the final but one string symbol (“T” or “P”).  

 

Figure 3: Leftmost Node of embedded Reber grammar 

This challenge uses RTRL, Fahlman's "Recurrent Cascade-Correlation" (RCC), Elman nets 
(ELM), and long short time memory (LSTM). Table 1 shows the outcomes of the 
experiments in great detail. Only LSTM was almost always successful in completing the 
task. It also learned more quickly than the competition. 

Table 1: Result of the “embedded Reber grammar” showing percentage of effective testing 
and learning time for effective testing for RTRL, Fahlman's "Recurrent Cascade-Correlation" 
(Rcc), Elman nets (ELM), and long short time memory (LSTM) 

Techniques Hiddent 

components 

# Loads Learning 

Rate 

% of Success Success After 

RTRL 3 ~ 170 0.05 “some 
fraction” 

173,000.00 

RTRL 12 ~493 0.1 “some 
fraction” 

25,000.00 

ELM 15 ~434 - 0 >200,000.00 
RCC 7-9 ~11-198 - 50 182,000.00 

LSTM 4 blocks, size 1 263 0.1 100 39,600 
LSTM 3 blocks, size 2 275 0.1 100 21,630 
LSTM 3 blocks, size 2 275 0.2 96 14,050 
LSTM 4 blocks, size 1 263 0.5 96 9,400 
LSTM 3 blocks, size 2 275 0.5 100 8,430 
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Long time lag 

On a basic challenge (Figure 3) involving long minimal time lags of 1000, the limits of gradient 
descent biased approaches may be illustrated. For a process that takes a long time, there are 
regularities with lags. Working out is done using two sequences: (y1,a(1) a2,....,a(p-1),y) and (x,a(1,) 
a2,....,a(p-1), x). A (p + 1)-dimensional feedback vector encodes the symbols locally. The net must 
predict the next string symbol in each step while the strings are processed sequentially. The net 
must remember the first symbol to anticipate the last symbol. This task, on the other hand, has a 
p-second time latency. It's worth noting that the sequences exhibit local regularities that the 
neural sequence chunker requires, but that extended short-term memory does not. Back-
Propagation Through Time" (BPTT) or "Real-Time Recurrent Learning" (RTRL), the neural 
sequence chunker (CH) (21), and LSTM are comparable. When the minimal time lag exceeds 10 
steps, the outcomes based on gradient-oriented techniques (BPTT, RTRL) become problematic. 

Table 2: The result of Long Term Lags with regularities showing effective percentage and 
learning time until success. 

Techniques Delay p Learning rate # loads % Effective test Success after 

RTRL 4 1.0 35 77 1,043,000.00 
RTRL 4 4.0 35 55 892,000.00 
RTRL 4 10.0 35 21 254,000.00 
RTRL 10 1.0-10.0 143 0 >5,00,000.00 
RTRL 100 1.0-10.0 143 0 >5,000,000.00 
BPTT 100 1.0-10.0 143 0 >5,000,000.00 
CH 100 1.0 10505 31 32,300.00 

LSTM 100 1.0 10503 100 5030.00 

On the second part of the task very long-term lags devoid of symmetries. The objective is to 
estimate the last character of a series. There are p + 4 likely response symbols 
signified 𝑎1, … . , 𝑎𝑝−1 ,𝑎𝑝, 𝑎𝑝+1 = 𝜄, 𝑎𝑝+2 = 𝑏, 𝑎𝑝+3 = 𝑥, 𝑎𝑝+1 = 𝑦. Again, 𝑎𝑖 is locally 

represented by a (p + 4)-dimensional vector. Working out sequences are arbitrarily selected 
from 2 very similar sets of sequences: {(𝑏, 𝑦,𝑎𝑖1, 𝑎𝑖2 … . , 𝑎𝑖𝑝−1 ,𝑎𝑖𝑞+𝑘 , 𝜄, 𝑦)|1 ≤ 𝑖1, 𝑖2, … , 𝑖𝑞+𝑘  ≤

 and {(𝑏, 𝑥,𝑎𝑖1, 𝑎𝑖2 … . , 𝑎𝑖𝑝−1 ,𝑎𝑖𝑞+𝑘 , 𝜄, 𝑥)|1 ≤ 𝑖1, 𝑖2, … , 𝑖𝑞+𝑘  ≤ 𝑞}. The minimal series dimension is 

q + 4; k is selected arbitrarily with the prospect 
1

10
(

19

10
)^𝑘. To overcome the task the network 

has to learn to maintain a representation of the second element for at least q + 1 time phases.  

Time 3: Very long term lags devoid of Regularities 

Q(time lag – 1) # Loads Success After 

50 364 30,000 
100 664 31,000 
200 1264 33,000 
500 3064 38,000 

1,000 6064 49,000 

Table 3 gives a detailed account of the mean number of working out series needed by long 
short-term memory to be effective. Also, letting the number of feedback characters (and 
loads) upsurge in propagation to the time lag, learning time upsurges very gradually. 

CONCLUSION AND RECOMMENDATIONS 

The inaccuracy flow for gradient-oriented recurrent learning approaches was hypothetically 
examined. This analysis exhibited that learning to link long-term lags can be problematic. 



Fadziso: Overcoming the Vanishing Gradient Problem during Learning Recurrent Neural Nets (RNN)                                                                         (197-208) 

Page 206                                                                                                                                                             Volume 9, No 1/2020 | AJASE 

Cutting-edge approaches to solving the gradient vanishing difficulty were revealed, but these 
methods have serious disadvantages, for example, practicable only for discrete data. The 
study deep-rooted that orthodox learning classifiers for recurrent neural networks are not able 
to learn long-term lag complications at a reasonable interval. Cutting-edge approaches such as 
Long Short Term Memory performed better on long term lag problems involving time lags of 
one thousand steps. Hence, long short-term memory through BPTT or RTRL is highly 
recommended to solve gradient vanishing problems during learning recurrent nets. 
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