
Asian Journal of Applied Science and Engineering, Volume 9, No 1/2020 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2020 Author/(s) Page 197

Overcoming the Vanishing Gradient Problem

during Learning Recurrent Neural Nets (RNN)

Takudzwa Fadziso

Institute of Lifelong Learning and Development Studies, Chinhoyi University of
Technology, ZIMBABWE

ABSTRACT
Artificial neural nets have been equipped with working out the difficulty that
arises as a result of exploding and vanishing gradients. The difficulty of
working out is worsened exponentially particularly in deep learning
understanding. With gradient-oriented learning approaches the up-to-date
error gesture has to “flow back in time” throughout the response links to
previously feedbacks for designing suitable feedback storage. To address the
gradient vanishing delinquent, adaptive optimization approaches are given.
With adaptive learning proportion, the adaptive gradient classifier switches the
constraint for substantial hyper factor fine-tuning. Based on the numerous
outstanding advances that recurrent neural nets (RNN) have added in the
erstwhile in the field of Deep Learning. The objective of this paper is to have a
concise synopsis of this evolving topic, with a focus on how to over the
vanishing gradient problems during learning RNN. There are four types of
methods adopted in this study to provide solutions to the gradient vanishing
problem and they include approaches that do not employ gradients;
approaches that enforce larger gradients, approaches that work at a higher
level, and approaches that make use of unique structures. The inaccuracy flow
for gradient-oriented recurrent learning approaches was hypothetically
examined. This analysis exhibited that learning to link long-term lags can be
problematic. Cutting-edge approaches to solving the gradient vanishing
difficulty were revealed, but these methods have serious disadvantages, for
example, practicable only for discrete data. The study deep-rooted that
orthodox learning classifiers for recurrent neural networks are not able to learn
long-term lag complications at a reasonable interval.

Key Words: Vanishing Gradient, Recurrent Neural Network, Deep learning, Error Flow

Source of Support: None, No Conflict of Interest: Declared

 This article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially,
and although the new works must also acknowledge & be non-commercial.

INTRODUCTION

Artificial neural nets have been equipped with working out the difficulty that arises as a
result of exploding and evaporation gradient (Glorot and Bengio, 2010; Bynagari, 2019;
LeCum et al., 2015). The difficulty of working out is worsened exponentially particularly in
deep learning understanding. The term "deep learning" states to a sophisticated artificial

http://creativecommons.org/licenses/by-nc/4.0/

Fadziso: Overcoming the Vanishing Gradient Problem during Learning Recurrent Neural Nets (RNN) (197-208)

Page 198 Volume 9, No 1/2020 | AJASE

intelligence structure. Many sheets of data processing phases in hierarchical designs are
worked out by a backpropagation classifier for pattern categorization in neural networks
design (Bynagari, 2019). Backpropagation classifier for uses optimization approaches to
calculate the error function as presented in Figure 1. At that time, the loss function is the
backdrop from the throughput sheet to the feedback sheet for loads factor modification.
Typical backprop botched to make in deep neural nets owing to the prevalent existence of
confined ideal situation and other optimization difficulties in the non-convex unbiased
function (Glorot and Bengio, 2010). This gradient vanishing problem has driven the top
secreted sheets into inundation and is revolving more undecorated as the depth escalates.

Figure 1: Backpropagation classifier for uses optimization approaches

Recurrent neural nets (RNN) can mine dependencies temporarily. Moreover, RNN is
employed for presentations together with delays temporary of appropriate gestures, for
instance, speech processing, process control, time-series assessment, non-Markovian control
(Puskorius and Feldkamp, 1994; Hochreiter and Schmidhuber, 1997), music arrangement
(Mozer, 1992). RNN should be able to learn which previous feedbacks have to be
maintained to create the up-to-date preferred throughput. With gradient-oriented learning
approaches the up-to-date error gesture has to “flow back in time” throughout the input
links to previously feedbacks for designing suitable feedback storage.

The major cause of gradient varnishing is the selection of activation function, and it can be
divided further into saturation activation functions that are regularly utilized for verdict
margins in the initial neural net signs of progress. Sigmoid function (Bynagari & Amin,
2019) is prevalent for the reason of its differentiable possessions that are appropriate for
backpropagation in neural nets. The linear rectified unit (Glorot et al., 2011), on the other
hand, is an example of an unsaturated activation function that has been shown to solve the
saturation problem. For the reason that linear rectified units do not involve an exponential
term to characterize nonlinearity, it is allowed of the gradient vanishing difficult. For
artificial intelligence working out, linear rectified units are now the most extensively used
activation function. As a result, choosing the best deep learning structure influences time
overwhelming. To challenge the gradient vanishing delinquent, adaptive optimization
approaches are given. With adaptive learning proportion, the adaptive gradient classifier
(Duchi et al. 2011) switches the constraint for substantial hyper factor fine-tuning.

Objectives of the Study

Based on the numerous outstanding advances that recurrent neural nets (RNN) have added
in the erstwhile in the field of Deep Learning are ringing bells (Paruchuri & Asadullah,
2018). The objective of this paper is to have a concise synopsis of this evolving topic, with a
focus on how to over the vanishing gradient problems during learning RNN.

Asian Journal of Applied Science and Engineering, Volume 9, No 1/2020 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2020 Author/(s) Page 199

This research article is sectioned into five parts, Section one is the introduction, a concise
description of the problem statement, and objectives of the study. Section 2 presents a
review of related pieces of literature, under this section, the hypothetical analyzes of the
gradient vanishing problems and other related issues to the subject matter and previous
research work. Section three presents techniques employed in attempting to overcome the
vanishing gradient problems. The traditional classifiers used to address this problem is
compared with advanced approaches on different tasks including long time lags, and
Section 5 present conclusion and recommendation.

LITERATURE REVIEW

Decomposing Gradient

Traditional Backpropagation through time (BPTT): Assuming a completely coupled
recurrent network with components 1,…,n is given, the stimulation of a non-feedback
component ί with activation function 𝑓𝑖 as well as network feedback 𝑛𝑒𝑡𝑖 (𝑡) = ∑ 𝑤𝑖𝑗𝑦𝑗(𝑡 −𝑗

1) 𝑖𝑠 𝑦𝑗 (𝑡) = 𝑓𝑖 (𝑛𝑒𝑡𝑖 (𝑡)). Where 𝑤𝑖𝑗 is the load on the connection usually from component j

to ί. 𝑑𝑘(𝑡) Signifies throughput component k’s aim at current time t. utilizing mean square
error, k’s exterior (Aim) error is

𝐸𝑘 (𝑡) = (𝑑𝑘 (𝑡) − 𝑦𝑘(𝑡))

Every non-throughput units ί contain zero exterior error 𝐸𝑖 (𝑡) = 0. At a random period 𝜏 ≤ 𝑡
non-feedback unit j’s error indication is the summation of the exterior error and the
backdrop error indicator from the last step:

𝜗𝑗 (𝜏) = 𝑓𝑗
𝑙 (𝑛𝑒𝑡𝑗 (𝜏)) (𝐸𝑗 (𝜏) + ∑ 𝑤𝑖𝑗𝜗𝑖

𝑖

(𝜏 + 1))

Error indicators are adjusted to zero when the simulation is reset at time 𝜏: 𝜗𝑗 (𝜏) = 0 and

𝑓𝑗
𝑙 (𝑛𝑒𝑡𝑗(𝜏)) = 0. The load modernize at time 𝜏 is 𝑤𝑗𝑖

𝑛𝑒𝑤 = 𝑤𝑗𝑖
𝑜𝑙𝑑+ ∝ 𝜗𝑗 (𝜏)𝑦𝑙(𝜏 − 1), where ∝

denotes the learning proportion, and l is a random component coupled to unit j.

Backpropagating an error occurring at a component u at time phase t to a component v for q
time phases scales the error by:

𝜕𝜗𝑣 (𝑡 − 𝑞)

𝜕𝜗𝑣 (𝑡)
= {

𝑓𝑣
𝑙 (𝑛𝑒𝑡𝑣 (𝑡 − 1))𝑤𝑢𝑣

𝑓𝑣
𝑙 (𝑛𝑒𝑡𝑣 (𝑡 − 𝑞)) ∑

𝜕𝜗𝑣 (𝑡 − 𝑞 + 1)

𝜕𝜗𝑣 (𝑡)
𝑤𝑙𝑣

𝑛

𝑙=1

𝑞 = 1

𝑞 > 1

With 𝑙𝑞 = 𝑣 𝑎𝑛𝑑 𝑙0 = 𝑢, the scaling factor is

𝜕𝜗𝑣 (𝑡 − 𝑞)

𝜕𝜗𝑣 (𝑡)
= ∑ …

𝑛

𝑙𝑙=1

∑ ∏ 𝑓𝑙𝑚

𝑙
𝑞

𝑚=1

𝑛

𝑙𝑞−1=1

 (𝑛𝑒𝑡𝑙𝑚
(𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1

The relationship between the empirically observed disappearing gradient and the above
equation, the sum of the 𝑛𝑞−1terms (Hochreiter and Schmidhuber, 1997).

∏ 𝑓𝑙𝑚

𝑙
𝑞

𝑚=1
 (𝑛𝑒𝑡𝑙𝑚

(𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1

Scales the error backflow, if

Fadziso: Overcoming the Vanishing Gradient Problem during Learning Recurrent Neural Nets (RNN) (197-208)

Page 200 Volume 9, No 1/2020 | AJASE

𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) = ⌊𝑓𝑙𝑚

𝑙 (𝑛𝑒𝑡𝑙𝑚 (𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1
 ⌋ < 1.0

For every m the biggest product in:

𝜕𝜗𝑣 (𝑡 − 𝑞)

𝜕𝜗𝑣 (𝑡)
= ∑ …

𝑛

𝑙𝑙=1

∑ ∏ 𝑓𝑙𝑚

𝑙
𝑞

𝑚=1

𝑛

𝑙𝑞−1=1

 (𝑛𝑒𝑡𝑙𝑚
(𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1

Drops exponentially with q, which is the error flow disappears. A vanishing mistake or error

backflow has virtually no consequence on the load keep posted. Assumed constant 𝑦𝑙𝑚−1 ≠

0, 𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) is highest where 𝑤𝑙𝑚𝑙𝑚−1
−

1

𝑦𝑙𝑚−1
coth (

1

2
𝑛𝑒𝑡𝑙𝑚

)

For every absolute load value improving ⌊𝑤𝑙𝑚𝑙𝑚−1
⌋ → ∞, 𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) traces to zero.

Therefore, the gradient vanishing cannot be overlooked by improving the absolute load

values, the elements in:∏ 𝑓𝑙𝑚

𝑙𝑞
𝑚=1 (𝑛𝑒𝑡𝑙𝑚

(𝑡 − 𝑚)) 𝑤𝑙𝑚𝑙𝑚−1
 may have diverse signs. However,

improving or upturning the quantity of components n may not automatically improve the
“absolute error flow digits”. Rather with more components, the prospect of the inaccuracy
backflow’s entire digit improves. For logistic sigmoid function, 𝑓𝑙𝑚

, the optimal value of

𝑓𝑙𝑚

𝑙 = 0.25 in that case 𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) < 1 for ⌊𝑤𝑙𝑚𝑙𝑚−1
⌋ is less than 4.0. In the case that 𝑤𝑚𝑎𝑥

is less than 4.0, this holds for the entire optimal load value 𝑤𝑚𝑎𝑥 that is for activation or
initialization then every 𝜌 (𝑚, 𝑙𝑚, 𝑙𝑚−1) are less than 1.0. Therefore, with logistic initialization
functions, the inaccuracy flow tends to fades or vanish particularly at the commencement of
learning. Improving the learning proportion will not cancel the effects of gradients
vanishing, for the reason that it will not transform the percentage of long-term inaccuracy
flow and short-term inaccuracy flow, that is latest response have more impact on the recent
throughput (Hochreiter and Schmidhuber, 1997; Vadlamudi, 2016).

Upper boundary for the absolute scaling parameter: Matrix A’s component in the i-th
vertical column and j-th horizontal row is signified by ⌊𝐴⌋.𝑖𝑗 . the i-th element of vector x is

represented by ⌊𝑥⌋.𝑖 . the initialization vector at time t with an after deductions feedback

vector 𝑁𝑒𝑡 (𝑡) ∶= 𝑊 𝑌 (𝑡 − 1) and load matrix ⌊𝑊⌋.𝑖𝑗 ≔ 𝑤𝑖𝑗is ⌊𝑌 (𝑡)⌋.𝑖 ≔ 𝑦𝑖 (𝑡) that is to

simplify the exterior feedback by suppressing.

The initialization function vector is then given as ⌊𝐹 (𝑁𝑒𝑡 (𝑡))⌋.𝑖 ≔ 𝑓𝑖 (𝑛𝑒𝑡𝑖 (𝑡)), 𝐹𝑙(𝑡) is the

transverse matrix of 1st order derivatives expressed as : ⌊𝐹𝑙(𝑡)⌋.𝑖𝑗 ∶= 𝑓𝑖
𝑙(𝑛𝑒𝑡𝑖 (𝑡)) if 𝑖 = 𝑗, and

⌊𝐹𝑙(𝑡)⌋.𝑖𝑗 ≔ 0 otherwise. 𝑤𝑣 is component v’s outbound vector load (⌊𝑊𝑣⌋.𝑖 ≔ ⌊𝑊⌋.𝑖𝑣 = 𝑤𝑖𝑣)

and 𝑤𝑣𝑇 is component u’s inward vector load (⌊𝑊𝑢𝑇⌋.𝑖 ≔ ⌊𝑊⌋.𝑢𝑖 = 𝑤𝑢𝑖). The vector
𝜕𝑌 (𝑡)

𝜕𝑛𝑒𝑡𝑣 (𝑡−𝑞)
 is expressed as |

𝝏𝒀 (𝒕)

𝝏𝒏𝒆𝒕𝒗 (𝒕−𝒒)
 | .𝒊 ≔

𝝏𝒚𝒊 (𝒕)

𝝏𝒏𝒆𝒕𝒗 (𝒕−𝒒)
 for q component to be greater than or

equal to 0 and the matrix ∇𝑌 (𝑡−1)𝑌(𝑡) is expressed as |∇𝑌 (𝑡−1)𝑌(𝑡)|.𝑖𝑗 ∶=
𝜕𝑦𝑖 (𝑡)

𝜕𝑛𝑒𝑡𝑣 (𝑡−𝑞)
 from this

expression ∇𝑌 (𝑡−1)𝑌(𝑡) = 𝐹𝑖(𝑡)𝑊 .

Data Hypothetical Consideration: Looking at gradient vanishing from different
standpoints, gradient vanishing relates to a piece of information vanishing in the interior
states of an RNN. Let the function mapping be denoted with G, the previous interior states
Y (t – 1) to the definite interior states,

𝑮(𝒀(𝒕 − 𝟏)) ∶= 𝑭(𝑵𝒆𝒕 (𝒕)) = 𝑭 (𝑾 𝒀 (𝒕 − 𝟏))

Since Y (t) and Y (t – 1) as arbitrary factors, the shared data between these arbitrary factors is

𝐻(𝑌 (𝑡)) − 𝐻 (𝑌 (𝑡)⌊𝑌 (𝑡 − 1)) means the conditional arbitrary parameters Y (t) given Y (t – 1).

Asian Journal of Applied Science and Engineering, Volume 9, No 1/2020 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2020 Author/(s) Page 201

For the entropy of Y (t)

𝐻 (𝑌 (𝑡)) ≤ 𝐻 (𝑌 (𝑡 − 1) + 𝐸 (log|det(𝐽 𝑌 (𝑡 − 1)))⌊)

This equation holds where E is the expectation of arbitrary parameters and J is the Jacobian

of G. the firmness of the recurrent network necessitates ⌊det(𝐽(𝑌(𝑡 − 1)))⌋ ≤ 1

The requirement makes the RNN resistant to noise that is small variations of the feedback
do not effort the net to very diverse states (Pineda, 1988; Paruchuri, 2019; Ganapathy, 2016).

The LHS of ⌊det(𝐽(𝑌(𝑡 − 1)))⌋ ≤ 1 is typically less than 1 such that the data in the internal

states become extinct over time. The challenge of vanishing data becomes shoddier with a
snowballing dimension of the time interval over which the data has to be stowed. To

circumvent vanishing data det(𝐽(𝑌(𝑡 − 1))) = 1 must be imposed. A volume-conserving

mapping constrained to only one interior state is the major idea of “Long Short Term
Memory” (LSTM) (Hochreiter and Schmidhuber, 1997; Hochreiter and Schmidhuber, 1997;
Hochreiter and Schmidhuber, 1996).

Stimulation Function

Recurrent neural networks comprise numerous hidden sheets built together hierarchically
to calculate inference. Each sheet is prepared of numerous nodes or artificial perceptron’s as
presented in Figure 2. After adding up all of the response and load parameters, a
stimulation function is utilized to regulate how each neuron fires. The perceptron
component can be defined as,

𝑥 = ∑ 𝑤𝑛 × 𝑣𝑛 + 𝑏𝑛

𝑖

𝑛=1

, 𝑦 = 𝑓(𝑥),

Where 𝑖 is the summation of nodes, 𝑤𝑛 stands for loads variables, 𝑣𝑛 stands for responses, 𝑏𝑛
stands for bias variables, and f(.) stands for stimulation function. The stimulation function
adds non-linearity to the response sets while also limiting the firing boundary to a finite
value (Lau and Lim, 2018). With enough working out cycles, the network is capable to
convey the proper inference since only some of the nodes in each layer are activated
depending on the input. Saturated and unsaturated stimulation functions are the two forms
of stimulation functions in general.

Figure 2: Basic Perceptron component structure

Saturated stimulation function: Saturated stimulation functions, such as the sigmoid
stimulation function, are more broadly utilized since they closely resemble biological
stimulation proportions (Bynagari & Amin, 2019). The sigmoid stimulation function has an
‘S' shape with a balance of linear and non-linear inputs (Bynagari, 2017). The following
formula is used to compute sigmoid stimulation:

Fadziso: Overcoming the Vanishing Gradient Problem during Learning Recurrent Neural Nets (RNN) (197-208)

Page 202 Volume 9, No 1/2020 | AJASE

𝒇𝟏 (𝒙) =
𝟏

𝟏 + 𝒆−𝒙

As a result, each neuron's firing is limited to a range of 0 to 1, which is hypothetically ideal
for turning neurons on or off. The gradient for data falling in the 0 or 1 range, on the other
hand, is nearly zero. Backpropagation into networks with saturated zero gradients results in
information loss (Bynagari, 2014). In a nutshell, this expounds on the gradient vanishing
problem. With a saturated stimulation function, there is a gradient problem. The blunder
due to vanishing gradient, the signal for optimization is lost, and the working out repetition
was entirely halted as a result of this.

Unsaturated Stimulation Function: The linear rectified unit (Glorot et al., 2011) is an
unsaturated stimulation function that was developed to solve the gradient vanishing
problem. The linear rectified unit is the most widely utilized stimulation function presently
since most contemporary network design is frequently wide and deep. The linear rectified
unit takings 0 if it gets a negative number and the response values if it gets positive
numbers, or more simply expressed as,

𝒇𝟐 (𝒙) = {
𝒙 𝒙 > 𝟎

𝟎, 𝒙 ≤ 𝟎

Because the output is either 0 or some positive numbers, the linear rectified unit is also
known as the ramp function. As a result, since the throughput is not structured for any
positive values, the linear rectified unit is prone to gradient vanishing problems (Yang and
Schoenholz, 2017). As a result, the linear rectified unit stimulation function is executed in
conjunction with correct load variables initialization and/or pre-working out techniques.
Furthermore, if you provide zero as a throughput during the negative response, the
backpropagation method will produce a zero gradient. This kills the neuron (preventing it
from firing again) and it will never resuscitate. Leaky linear rectified unit (Maas et al., 2013)
presented a non-zero slope value for the negative component of the linear rectified unit to
circumvent backpropagating nil gradient into the nets, thus circumventing the vanishing
linear rectified unit problem. However, it has been noted that leaky linear rectified
component produces complex outcomes liable on the non-zero slope value chosen, which is
subsequently overcome by Parametric linear rectified unit (Bynagari & Fadziso, 2018). As an
alternative to postulating a predefined continual value as in a leaky linear rectified unit, the
parametric linear rectified component assigns the slope value as a working out parameter.

METHODS

Gradient descent oriented classifiers

The gradient vanishing problem affects the most extensively used techniques (Hochreiter
and Schmidhuber, 1997; Elman, 1988, Fahlman, 1991; Ganapathy, 2018a; Schmidhuber, 1992;
Pearlmutter, 1989; Pearlmutter, 1995; Vadlamudi, 2019). They have a lot of trouble learning
long-term from a gradient vanishing problem. There are four types of solutions:

 Approaches that do not employ gradients;

 Approaches that enforce larger gradients.

 Approaches that work at a higher level

 Approaches that make use of unique structures

Universal search approaches do not practice gradient data: Multiple grid arbitrary search,
simulated annealing (Ganapathy, 2016), and arbitrary load guessing (Schmidhuber and

Asian Journal of Applied Science and Engineering, Volume 9, No 1/2020 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2020 Author/(s) Page 203

Hochreiter, 1995) are examples of non-gradient data methods that were investigated. Global
search strategies have been found to function well on "simple" situations with long-term
dependencies. The absence of exact calculation and the use of nets with few variables
characterize “simple” issues (these solutions conform to “flat minima”) (Hochreiter and
Schmidhuber, 1997).

Approaches that enforce larger gradients: Although time-weighted pseudo-Newton
optimization and separate error propagation can enforce larger gradient values, it appears that
these techniques have difficulty learning to keep precise real-valued information over time.

Approaches that work at a higher level: Previously, an EM method for aim propagation
was advocated (Ganapathy, 2016). Because this method uses a discrete number of states, it
will have issues with continuous values. For RNN training, Kalman filter procedures are
used (Puskorius and Feldkamp, 1994). A derivative discount factor, on the other hand,
causes gradient vanishing difficulties. A hierarchical chunker system works well when a
long-term lag problem has local regularities (Schmidhuber, 1992; Bynagari, 2018).

Approaches that make use of unique structures: Second-order nets with sigma-pi
components are commonly used to increase error flow, however vanishing error glitches are
difficult to circumvent (Watrons and Kuhn, 1992; Miller and Giles, 1993). Net initialization or
stimulation from preceding time phases is transmitted back into the network using fixed delay
lines in a "Time-Delay Neural Network" (TDNN) (Lang et al., 1990). For the reason that the
error uses "shortcuts" as it proliferates back, the error reduction in the "Time-Delay Neural
Network" is decelerated down. The “Time-Delay Neural Network” has a trade-off: extending
the delay line length increases error flow, but the net has more parameters/components.
NARX nets (Lin et al., 1996), which use the load summation of old initialization instead of a
fixed deferral line, are special examples of "Time-Delay Neural Network" (Plate, 1993). The
“Gamma Memory,” a more complex version of the “Time-Delay Neural Network,” has been
proposed (Ganapathy, 2019), but its performance on glitches with long-time cravings does not
perform to be better than the “Time-Delay Neural Network” performance.

Time constants regulate the scaling factor of an error if it is propagated back for a one-time
step at a single unit in some designs (Mozer, 1992). Extended time gaps, on the other hand,
cannot be processed for the reason that fine-tuning the time constant is nearly impossible.
The vanishing gradient is circumvented by updating a single component by adding the old
activation and scaled current net input (Sun et al., 1993). However, further irrelevant net
inputs can cause the stored value to be perturbed. “Long Short Term Memory” (LSTM)
(Hochreiter and Schmidhuber, 1996; Hochreiter and Schmidhuber, 1997; Hochreiter and
Schmidhuber, 1997) is a specific design that uses special components to impose consistent
error flow (comprising a volume-conserving mapping). Unlike the previously suggested
approach for avoiding vanishing gradients (Sun et al., 1993)

RESULTS AND DISCUSSION

Experiment 1: Embedded Reber Grammar

The “embedded Reber grammar” was extensively used as a point of reference problem for
RNNs (Cleeremans et al., 1989; Smith and Zipser, 1989; Fahlman, 1991; Ganapathy, 2018b).
Because there are no long gaps in this job, it can be mastered using traditional methods. The
experiment demonstrates that alternative approaches outperformed traditional gradient
descent algorithms on a short time lag challenge. As seen in Figure 3, being at the leftmost
node (with an empty string), A string is created by following the directed edges and totaling

Fadziso: Overcoming the Vanishing Gradient Problem during Learning Recurrent Neural Nets (RNN) (197-208)

Page 204 Volume 9, No 1/2020 | AJASE

the conforming symbols to the current string until the rightmost node is reached. Alternate
edges are chosen at random, with a chance of 0.5. The net analyzes the string in order,
receiving the real symbol as a response and having to estimate the next symbol. The net must
store the second symbol (“T” or “P”) to estimate the final but one string symbol (“T” or “P”).

Figure 3: Leftmost Node of embedded Reber grammar

This challenge uses RTRL, Fahlman's "Recurrent Cascade-Correlation" (RCC), Elman nets
(ELM), and long short time memory (LSTM). Table 1 shows the outcomes of the
experiments in great detail. Only LSTM was almost always successful in completing the
task. It also learned more quickly than the competition.

Table 1: Result of the “embedded Reber grammar” showing percentage of effective testing
and learning time for effective testing for RTRL, Fahlman's "Recurrent Cascade-Correlation"
(Rcc), Elman nets (ELM), and long short time memory (LSTM)

Techniques Hiddent

components

Loads Learning

Rate

% of Success Success After

RTRL 3 ~ 170 0.05 “some
fraction”

173,000.00

RTRL 12 ~493 0.1 “some
fraction”

25,000.00

ELM 15 ~434 - 0 >200,000.00
RCC 7-9 ~11-198 - 50 182,000.00

LSTM 4 blocks, size 1 263 0.1 100 39,600
LSTM 3 blocks, size 2 275 0.1 100 21,630
LSTM 3 blocks, size 2 275 0.2 96 14,050
LSTM 4 blocks, size 1 263 0.5 96 9,400
LSTM 3 blocks, size 2 275 0.5 100 8,430

Asian Journal of Applied Science and Engineering, Volume 9, No 1/2020 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2020 Author/(s) Page 205

Long time lag

On a basic challenge (Figure 3) involving long minimal time lags of 1000, the limits of gradient
descent biased approaches may be illustrated. For a process that takes a long time, there are
regularities with lags. Working out is done using two sequences: (y1,a(1) a2,....,a(p-1),y) and (x,a(1,)
a2,....,a(p-1), x). A (p + 1)-dimensional feedback vector encodes the symbols locally. The net must
predict the next string symbol in each step while the strings are processed sequentially. The net
must remember the first symbol to anticipate the last symbol. This task, on the other hand, has a
p-second time latency. It's worth noting that the sequences exhibit local regularities that the
neural sequence chunker requires, but that extended short-term memory does not. Back-
Propagation Through Time" (BPTT) or "Real-Time Recurrent Learning" (RTRL), the neural
sequence chunker (CH) (21), and LSTM are comparable. When the minimal time lag exceeds 10
steps, the outcomes based on gradient-oriented techniques (BPTT, RTRL) become problematic.

Table 2: The result of Long Term Lags with regularities showing effective percentage and
learning time until success.

Techniques Delay p Learning rate # loads % Effective test Success after

RTRL 4 1.0 35 77 1,043,000.00
RTRL 4 4.0 35 55 892,000.00
RTRL 4 10.0 35 21 254,000.00
RTRL 10 1.0-10.0 143 0 >5,00,000.00
RTRL 100 1.0-10.0 143 0 >5,000,000.00
BPTT 100 1.0-10.0 143 0 >5,000,000.00
CH 100 1.0 10505 31 32,300.00

LSTM 100 1.0 10503 100 5030.00

On the second part of the task very long-term lags devoid of symmetries. The objective is to
estimate the last character of a series. There are p + 4 likely response symbols
signified 𝑎1, … . , 𝑎𝑝−1 ,𝑎𝑝, 𝑎𝑝+1 = 𝜄, 𝑎𝑝+2 = 𝑏, 𝑎𝑝+3 = 𝑥, 𝑎𝑝+1 = 𝑦. Again, 𝑎𝑖 is locally

represented by a (p + 4)-dimensional vector. Working out sequences are arbitrarily selected
from 2 very similar sets of sequences: {(𝑏, 𝑦,𝑎𝑖1, 𝑎𝑖2 … . , 𝑎𝑖𝑝−1 ,𝑎𝑖𝑞+𝑘 , 𝜄, 𝑦)|1 ≤ 𝑖1, 𝑖2, … , 𝑖𝑞+𝑘 ≤

 and {(𝑏, 𝑥,𝑎𝑖1, 𝑎𝑖2 … . , 𝑎𝑖𝑝−1 ,𝑎𝑖𝑞+𝑘 , 𝜄, 𝑥)|1 ≤ 𝑖1, 𝑖2, … , 𝑖𝑞+𝑘 ≤ 𝑞}. The minimal series dimension is

q + 4; k is selected arbitrarily with the prospect
1

10
(

19

10
)^𝑘. To overcome the task the network

has to learn to maintain a representation of the second element for at least q + 1 time phases.

Time 3: Very long term lags devoid of Regularities

Q(time lag – 1) # Loads Success After

50 364 30,000
100 664 31,000
200 1264 33,000
500 3064 38,000

1,000 6064 49,000

Table 3 gives a detailed account of the mean number of working out series needed by long
short-term memory to be effective. Also, letting the number of feedback characters (and
loads) upsurge in propagation to the time lag, learning time upsurges very gradually.

CONCLUSION AND RECOMMENDATIONS

The inaccuracy flow for gradient-oriented recurrent learning approaches was hypothetically
examined. This analysis exhibited that learning to link long-term lags can be problematic.

Fadziso: Overcoming the Vanishing Gradient Problem during Learning Recurrent Neural Nets (RNN) (197-208)

Page 206 Volume 9, No 1/2020 | AJASE

Cutting-edge approaches to solving the gradient vanishing difficulty were revealed, but these
methods have serious disadvantages, for example, practicable only for discrete data. The
study deep-rooted that orthodox learning classifiers for recurrent neural networks are not able
to learn long-term lag complications at a reasonable interval. Cutting-edge approaches such as
Long Short Term Memory performed better on long term lag problems involving time lags of
one thousand steps. Hence, long short-term memory through BPTT or RTRL is highly
recommended to solve gradient vanishing problems during learning recurrent nets.

REFERENCES

Bynagari, N. B. (2014). Integrated Reasoning Engine for Code Clone Detection. ABC Journal
of Advanced Research, 3(2), 143-152. https://doi.org/10.18034/abcjar.v3i2.575

Bynagari, N. B. (2017). Prediction of Human Population Responses to Toxic Compounds by
a Collaborative Competition. Asian Journal of Humanity, Art and Literature, 4(2), 147-156.
https://doi.org/10.18034/ajhal.v4i2.577

Bynagari, N. B. (2018). On the ChEMBL Platform, a Large-scale Evaluation of Machine
Learning Algorithms for Drug Target Prediction. Asian Journal of Applied Science and
Engineering, 7, 53–64. Retrieved from
https://upright.pub/index.php/ajase/article/view/31

Bynagari, N. B. (2019). GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium. Asian Journal of Applied Science and Engineering, 8, 25–34.
Retrieved from https://upright.pub/index.php/ajase/article/view/32

Bynagari, N. B., & Amin, R. (2019). Information Acquisition Driven by Reinforcement in
Non-Deterministic Environments. American Journal of Trade and Policy, 6(3), 107-112.
https://doi.org/10.18034/ajtp.v6i3.569

Bynagari, N. B., & Fadziso, T. (2018). Theoretical Approaches of Machine Learning to
Schizophrenia. Engineering International, 6(2), 155-168.
https://doi.org/10.18034/ei.v6i2.568

Cleeremans, A., Servan-Schreiber, D. and McClelland, J. L. (1989). Finite-state sutomata and
simple recurrent networks, Neural Computation, 1, 372-381.

Duchi, J., Hazan, E. and Singer, Y. (2011). Adaptive sub-gradient methods for online
learning and stochastic optimization, J. Mach. Learn. Res., 12, 2121–2159.

Elman, J. L. (1988). Finding structure in time, Technical Report CRL 8801, Center for
Research in Language, Univ. of California, San Diego.

Fahlman, S. E. (1991). The recurrent cascade-correlation learning algorithm, in advances in
Neural Information Processing Systems, ed. R. P. Lippmann et al., (Morgan Kaufmann,
San Meteo, 1991), 190 – 196.

Ganapathy, A. (2016). Virtual Reality and Augmented Reality Driven Real Estate World to
Buy Properties. Asian Journal of Humanity, Art and Literature, 3(2), 137-146.
https://doi.org/10.18034/ajhal.v3i2.567

Ganapathy, A. (2018a). Cascading Cache Layer in Content Management System. Asian

Business Review, 8(3), 177-182. https://doi.org/10.18034/abr.v8i3.542

Ganapathy, A. (2018b). UI/UX Automated Designs in the World of Content Management
Systems. Asian Journal of Applied Science and Engineering, 7(1), 43-52.

https://doi.org/10.18034/abcjar.v3i2.575
https://doi.org/10.18034/ajhal.v4i2.577
https://upright.pub/index.php/ajase/article/view/31
https://upright.pub/index.php/ajase/article/view/32
https://doi.org/10.18034/ajtp.v6i3.569
https://doi.org/10.18034/ei.v6i2.568
https://doi.org/10.18034/ajhal.v3i2.567
https://doi.org/10.18034/abr.v8i3.542

Asian Journal of Applied Science and Engineering, Volume 9, No 1/2020 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2020 Author/(s) Page 207

Ganapathy, A. (2019). Cyber Security for the Cloud Infrastructure. Asian Journal of Applied

Science and Engineering, 8(1), 15-24.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks, in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. PMLR, 249–256.

Glorot, X., Bordes, A. and Bengio, Y. (2011). Deep sparse rectifier neural networks, in
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, 315–323.

Hochreiter, S. and Schmidhuber, J. (1996). Bridging long time lags by weight guessing and
Long short-term memory, In Spatiotemporal models in biological and artificial systems,
ed. F. L. Silva et al (IOS Press, Amsterdam, Netherlands, pp. 1996.

Hochreiter, S. and Schmidhuber, J. (1997). Flat minima. Neural Computation, 9(1): 1-42.

Hochreiter, S. and Schmidhuber, J. (1997). Long short term memory. Neural Computation,
9(8): 1735-1780.

Hochreiter, S. and Schmidhuber, J. (1997). LSTM can solve hard long time lag problem, in in
Advances in Neural Information Processing Systems 9, ed. M. C.Mozer et al. (Morgan
Kaufmann, San Meteo), pp. 473-479.

Lang, K., Waibel, A. and Hinton, G. E. (1990). A time-delay neural network architecture for
isolated word recognition. Neural Networks, 3: 23- 43.

Lau, M. M. and Lim, K. M. (2018). Review of adaptive activation function in deep neural
network, in 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences
(IECBES), Dec 2018, pp. 686–690.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning, Nature, 521(7533), 436 – 444.

Lin, T., Horne, B. G., Tino, P. and Giles, C. L. (1996). Learning long-term dependencies in
NARX recurrent neural networks. IEEE Transactions Neural Networks, 7(6), 1329-1338.

Maas, A. L., Hannun, A. Y. and Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models, in Proceedings of the 30th International Conference on Machine
Learning.

Miller, C. B. and Giles, C. L. (1993). Experimentl comparison of the effect of order in
recurrent neural networks. International Journal of Pattern Recognition and Artificial
Intelligence, 7(4), 849 – 872.

Paruchuri, H. (2019). Market Segmentation, Targeting, and Positioning Using Machine
Learning. Asian Journal of Applied Science and Engineering, 8(1), 7-14.

Paruchuri, H., & Asadullah, A. (2018). The Effect of Emotional Intelligence on the Diversity
Climate and Innovation Capabilities. Asia Pacific Journal of Energy and Environment, 5(2),
91-96. https://doi.org/10.18034/apjee.v5i2.561

Pearlmutter, B. A. (1995). Gradient calculation for dynamic recurrent neural networks: A
survey. IEEE Transactions on Neural Network, 6(5), 1212 – 1228.

Pearlmutter, B. A. 1989. Learning state space trajectories neural networks. Neural

Computation, 1(2): 263 – 269.

Plate, T. A. (1993). Holographic recurrent networks, in Advances in Neural Information
Processing Systems 5, ed. J.D. Cowan et al. (Morgan Kaufmann, San Meteo), 34-41.

https://doi.org/10.18034/apjee.v5i2.561

Fadziso: Overcoming the Vanishing Gradient Problem during Learning Recurrent Neural Nets (RNN) (197-208)

Page 208 Volume 9, No 1/2020 | AJASE

Puskorius, G. V. and Feldkamp, L. A. (1994). Neurocontrol of nonlinear dynamical systems
with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2),
279-297.

Robinson, A. J. and Fallside, F. (1987). The utility driven dynamic error propagation
network, Technical Report CUED/F-INFENG/TR.1, Cambridge Univ, Engineering
Department.

Schmidhuber, J. (1992). A fixed size storage O(n3) time complexity learning algorithm for
fully recurrent continually running networks. Neural Computation, 4(2), 243- 246.

Schmidhuber, J. and Hochreiter, S. (1996). Guessing can outperform many long timelag
algorithms.. Technical Report IDSIA-19-96, IDSIA.

Smith, A. w. and Zipser, D. (1989). Learning sequential structures with the real-time
recurrent learning algorithm. International Journal of Neural Systems, 1(2), 125-131.

Sun, G., Chen, H. and Lee, Y. (1993). Time warping invariant neural networks, in Advances
in Neural Information Processing Systems 5, ed. J. D Cowan et al. (Morgan Kaufmann,
San Meteo), 180-187.

Vadlamudi, S. (2016). What Impact does Internet of Things have on Project Management in
Project based Firms?. Asian Business Review, 6(3), 179-186.
https://doi.org/10.18034/abr.v6i3.520

Vadlamudi, S. (2019). How Artificial Intelligence Improves Agricultural Productivity and
Sustainability: A Global Thematic Analysis. Asia Pacific Journal of Energy and

Environment, 6(2), 91-100. https://doi.org/10.18034/apjee.v6i2.542

Watron, R. L. and Kuhn, G. M. (1992). Induction of finite-state languages using second-order
recurrent networks. Neural Computation, 4, 406-414.

Williams, R. J. (1989). Complexity of exact gradient computatuion algorithms for recurrent
neural networks, Technical Report NU-CCS-89-27, Boston: Northeastern Univ., College
of Computer Science.

Yang, G. and Schoenholz, S. S. (2017). Mean field residual networks: On the edge of chaos,
CoRR, vol. abs/1712.08969, 2017. [Online]. Available: http://arxiv.org/abs/1712.08969

--0--

https://doi.org/10.18034/abr.v6i3.520
https://doi.org/10.18034/apjee.v6i2.542
http://arxiv.org/abs/1712.08969

